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Abstract
Memristors have attracted tremendous interest in the fields of high-density memory and
neuromorphic computing. However, despite the tremendous efforts that have been devoted over
recent years, high operating voltage, poor stability, and large device variability remain key
limitations for its practical application and can be partially attributed to the un-optimized
interfaces between electrodes and the channel material. We demonstrate, for the first time, a van
der Waals (vdW) memristor by physically sandwiching pre-fabricated metal electrodes on both
sides of the two-dimensional channel material. The atomically flat bottom electrode ensures
intimate contact between the channel and electrode (hence low operation voltage), and the vdW
integration of the top electrode avoids the damage induced by aggressive fabrication processes
(e.g. sputtering, lithography) directly applied to the channel material, improving device stability.
Together, we demonstrate memristor arrays with a high integration density of 1010 cm−2, high
stability, and the lowest set/reset voltage of 0.12 V/0.04 V, which is a record low value for all
2D-based memristors, as far as we know. Furthermore, detailed characterizations are conducted
to confirm that the improved memristor behavior is the result of optimized metal/channel
interfaces. Our study not only demonstrates robust and low voltage memristor, but also provides
a general electrode integration approach for other memristors, such as oxide based memristors,
that have previously been limited by non-ideal contact integration, high operation voltage and
poor device stability.

Keywords: 2D-material, robust memristor, ultra-low threshold, atomically flat interfaces

1. Introduction

Memristors have attracted considerable attention for neur-
omorphic computing [1–6] and high-density memory [7–12].

∗
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title of the work, journal citation and DOI.

However, despite the tremendous efforts devoted over recent
years, the poor stability [6, 13] and large device variabil-
ity [14, 15] remain key limitations for its practical applic-
ation. Although the cell-to-cell variability can be addressed
with more controllable fabrication conditions (e.g. industry-
compatible processing line), the large cycle-to-cycle variabil-
ity is intrinsically inherited from the device structure and can
be partially attributed to the non-ideal interfaces between the
metal electrodes and the active channel. From the structural
point of view, a typical vertical memristor has a three-layer
metal/channel/metal sandwich structure with two interfaces:

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
2631-7990/21/045103+8$33.00 1

https://doi.org/10.1088/2631-7990/ac2296
https://orcid.org/0000-0001-9144-2864
https://orcid.org/0000-0002-0024-9290
mailto:yuanliuhnu@hnu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/2631-7990/ac2296&domain=pdf&date_stamp=2021-10-5
https://creativecommons.org/licenses/by/3.0/


Int. J. Extrem. Manuf. 3 (2021) 045103 Q Li et al

the bottom electrode (BE)/channel interface and the top elec-
trode (TE)/channel interface, both of which are imperative for
device operation and could greatly impact memristor reprodu-
cibility and stability. For example, noble metals (e.g. Au, Pt)
favor the formation of isolated islands or percolated networks
during initial substrate deposition, leading to a BE surface
roughness∼1–3 nm, which can further increase to tens or hun-
dreds of nanometers after the BE annealing process [16]. Such
a rough BE/channel interface results in non-uniform chan-
nel materials with localized strain, random band-structures,
and electrical properties, leading to a variable electrical field
distribution and large cycle-to-cycle variability. On the other
hand, conventional TE metals are fabricated through direct
deposition techniques based on the vaporization of precursor
materials (e.g. thermal/e-beam evaporation or sputtering) and
usually involve repeated bombardment by high-energy hot
metal atoms or atomic clusters, resulting in considerable
interface damage, metal diffusion into the channel [17], and
non-repeatable device behavior. This TE contact damage is
particularly fatal for ultra-thin vertical memristors where the
TE contact region is essentially the entire channel, leading to
greatly enhanced leakage current, device instability, and even-
tually device failure.

Various efforts have been devoted to improving memris-
tor stability, cycling endurance, and parameter reproducibil-
ity. Early attempts used a buffer layer to construct a bilayer
channel structure with improved stability and performance
[18–20]. For example, an intermediate HfOX layer between
the TE metal and HfO2 active channel was demonstrated
to significantly influence the switching behavior and was an
essential part of reliable device operation, where the inter-
mediate suboxide mediated oxygen ion movement, serving
as a buffer for redox reactions. However, the insertion of
an oxide buffer could increase the device’s overall resistance
with high set/reset voltage over 3 V/1.6 V [19]. Alternatively,
robust memristor operation was demonstrated by using a two-
dimensional (2D) semiconductor MoS2 as the active channel
and 2D graphene as both the TE and BE [21]. The dangling-
bond free 2D surface (MoS2 and graphene) offers atomically
sharp and clean interfaces within the TE/channel and BE/chan-
nel interfaces [22], overcoming previous limitations from BE
roughness and TE deposition induced damage, hence demon-
strating improved device stability with working temperatures
over 340 ◦C. Nevertheless, the relatively low conductivity
of graphene electrodes leads to excess series resistance, and
the inert graphene electrodes prohibit the low voltage electro-
chemical metallization (ECM) mechanism, limiting the set/re-
set voltage to 1.2 V/1.1 V. The resistance limiting effect may
become more pronounced with increasing integration density
by reducing the graphene electrode width (e.g. scaled below
100 nm into graphene nanoribbons).

Here, we demonstrate a new approach for low voltage and
robust memristor operation by using InSe as the active chan-
nel and damage-free van der Waals (vdW) metals as both
the BE (Au) and TE (Ag). By mechanically laminating and
sandwiching prefabricated metal electrodes with atomically

flat surfaces on both sides of an ultra-thin InSe, the intrinsic
channel material can be well retained without conventional
metal deposition induced damage.More importantly, the inter-
faces of both the BE/channel and TE/channel are atomically
clean and sharp, overcoming the previous limitations of poor
interface quality (e.g. point-contact, inhomogeneous channel),
hence, leading to improved device stability and reduced opera-
tion voltage. Together, we demonstrate memristor arrays with
a high integration density of 1010 cm−2

and operation duration over 400 cycles, which is a four-fold
increase compared to the control sample using conventional
deposited BE and TE. Notably, with desired vdW metal/chan-
nel interfaces, the channel thickness can be scaled to 1.6 nm
with an ultra-low set/reset voltage of 0.12 V/0.04 V, which
is a record low value for 2D based memristors, to the best
of our knowledge. Furthermore, detailed characterizations are
conducted to investigate the impact of BE roughness and TE
deposition induced damages, confirming that the improved
memristor behavior is the result of optimized metal/channel
interfaces in both BE and TE. Our study not only demon-
strates a reliable and low voltage memristor, but also provides
a general electrode integration approach for other memristors
or other ultra-thin vertical devices that are previously limited
by non-ideal contact integration and poor device stability.

2. Results and discussion

2.1. Fabrication flow of vdW memristors

Figure 1 schematically illustrates the process flow for fab-
ricating our memristor with both vdW TE and BE contact.
First, Au and Ag (both 50 nm thick) metal electrode arrays
are prefabricated on two separate Si substrates, as shown in
figures 1(a) and (b). They can be mechanically released from
the substrate using a previously developed method [23] and
demonstrate an atomically flat surface, replicating the flat sur-
face of the silicon substrate (details in the Methods section).
Next, the released Au electrode arrays (used as BE) are flipped
and placed on a SiO2 substrate, where the flat surface is facing
up, as schematically shown in figures 1(c) and (d). In this way,
we achieved flat BE arrays to overcome the previous limita-
tion of surface roughness. Then, a few layers of InSe flake are
used as the channel material and integrated on top of the BE
arrays using a standard dry alignment transfer process, form-
ing an intimate contact with the BE and a uniform Au/InSe
interface (figures 1(e) and (f)). Finally, the previously released
Ag electrode arrays are mechanically laminated on top of the
InSe channel as the TE contact, forming a crossbar structure
with the BE, as shown in figures 1(g) and (h). Notably, the
vdW integration process of the TE also leads to an atomically
clean and electrically sharp TE/InSe interface, which is essen-
tial to maintain the intrinsic properties of the ultra-thin channel
and to improve the device’s overall uniformity and reproducib-
ility. This is in significant contrast to the conventional TE dir-
ect deposition process, which involves repeated bombardment
of the channel by high-energy hot atoms or atomic clusters,
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Figure 1. (a), (b) Perspective (a) and cross-sectional (b) schematics of prefabricated BE and TE arrays on two separated silicon substrates;
(c), (d) perspective (c) and cross-sectional (d) schematics of the released BE and TE arrays. The released BE arrays are flipped with the
atomically flat surface; (e), (f) perspective (e) and cross-sectional (f) schematics of the alignment sandwiching process of the BE, InSe, and
TE under an optical microscope; (g), (h) perspective (g) and cross-sectional (h) schematics of the vdW memristor arrays with atomically flat
interfaces.

(a) (b)

5 μm 150 nm

Figure 2. Optical image (a) and scanning electron microscope
image (b) of memristor arrays with 50 nm electrode width and
100 nm pitch size. Thickness of electrodes is 20 nm.

leading to considerable interface damage, metal diffusion into
the channel [17, 24], and non-repeatable device behavior, par-
ticularly in ultra-thin channels.

Using the above fabrication process, we achieved memris-
tor crossbar arrays with the intrinsic 2D channel sandwiched
between two flat metals based on physical lamination pro-
cesses. We note that the demonstrated vdW electrode lamina-
tion processes (of both TE and BE) are compatible with high
density crossbar memristors. Figure 2 shows memristor arrays
with 50 nm line width and 100 nm pitch size (the size of the
array is dependent on the exfoliated film), corresponding to a
high integration density of 1010 cm−2. Further reducing the
pitch size can lead to the contact between two neighbor elec-
trodes (and device short) due to the strain generated during the
vdW integration process.

2.2. Electrical performance and the memristive mechanism

Electrical transport studies of the vdW memristor are carried
out at room temperature in a Lakeshore probe-station under
vacuum conditions (10−5 torr). For the measurement of all

devices, the TE is grounded, and the BE is always biased
(figures 3(a) and (b)). As shown in figures 3(c), a vdWmemris-
tor with a bilayer InSe channel (1.6 nm thick) exhibits bipolar
resistive switching and nonvolatile behavior with the low-
est set/reset voltages at 0.12 V/0.04 V, which is the lowest
recorded value of all 2D-based memristors. The observed low
switching voltages are important for neuromorphic comput-
ing and can be largely attributed to several geometric advant-
ages of our vdW structure. First, the vdW integration of TE
metals minimizes conventional fabrication induced damage to
channel material, enabling a highly scaled channel thickness
of 1.6 nm while retaining intrinsic channel properties. The
ultra-thin body thickness is crucial to reduce the bias voltage
required for Ag filament formation and then the reduced set/re-
set voltage [25]. On the other hand, the atomically flat BE
surface ensures intimate BE/channel contact with low con-
tact resistance in contrast to the conventional rough BE with
a much smaller metal-2D contact area (point-like contact in
rough BE/channel interface) with higher contact resistance, as
shown in figures 3(d) and (e). The low BE contact resistance
reduces the undesired voltage drop in the contact region and
further decreases the overall set/reset voltage. Furthermore,
the vdWmetal electrode’s (Ag or Au) contact resistance shows
lower series resistance compared to previously used graphene
electrodes [21], which also helps to reduce undesired voltage
drop.

Beyond the vdW interfaces, the use of Ag as the TE metal
is another important contributing factor for the low set/reset
voltage achieved. Owning to the active nature of Ag atoms,
our vdW memristor can be an ECM device, whereas previous
memristors based on layered MoS2 channels are more likely
to be valence change memory (VCM) devices [21, 26]. ECM
devices generally exhibit lower operation voltage [27] due to
the lower energy required for metal filament formation. To
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Figure 3. (a), (b) Schematic illustration (a) and optical image (b) of two parallel vdW memristors on the same InSe flake. These devices are
fabricated using the same batch of processes, where the TE is Ag in one device and Au in another device. The red dashed line represents the
bilayer InSe flake; (c) I–V curve of vdW Ag/InSe/Au memristor with clear switching behavior and low operation voltage; (d), (e) memristor
performance using rough BE and vdW BE, respectively; (f) I–V curve of parallel vdW Au/InSe/Au device without any resistive switching
behavior, suggesting the ECM mechanism of our vdW memristor. The insert is the output curve while bias voltage increases to 0.8 V.

confirm the ECM working mechanism in our devices, another
parallel Au TE is vdW integrated on the same InSe/BE het-
erostructures using the same batch of fabrication (figures 3(a)
and (b)). As shown in figure 3(f), the control device (Au/In-
Se/Au) does not demonstrate any resistive switching beha-
vior even bias increases to 0.8 V. This is in contrast to the
preferred memristive behavior within the parallel Ag/InSe/Au
vdW structure, suggesting the Ag electrode is essential for
memristor operation, consistent with previous ECM mechan-
isms based on Ag filament formation [28].

2.3. Comparison of memristors with rough BE and vdW flat
BE

To further investigate device stability and demonstrate the
importance of the vdW BE/channel interface, we fabricated
memristors using both evaporated rough BE and vdW flat BE,
while increasing the channel thickness to 2.4 nm and using
vdW Ag TE consistently. First, atomic force microscopy is
conducted to characterize the surface morphology of both BEs
after integrating the InSe channel. As shown in figure 4(a), the
vdW Au BE demonstrates an atomically flat surface with a
root mean square (RMS) roughness of 0.27 nm. Importantly,
the RMS remains unchanged after integrating the InSe chan-
nel, suggesting intimate contact between the BE/channel inter-
face, as schematically illustrated in figure 4(a). Conversely, the
as-deposited Au BE shows rough surface with a large RMS of
1.1 nm, which is consistent with previous reports [29]. In par-
ticular, the surface RMS reduces to 0.6 nm after integrating

the InSe channel on top of this rough BE (figure 4(b)), indic-
ating the InSe channel does not follow the surface morpho-
logy of the underlying BE and poor contact (i.e. insufficient
and localized contact area) within the conventional BE/chan-
nel interface, as schematically illustrated in figure 4(c). Such
a rough BE/channel interface results in non-uniform channels
with localized strain and random band structures and chan-
nel conductivity, leading to variable electrical field distribution
and large cycle-to-cycle variability (figure 4(d)). Based on the
measurement of the first 50 cycles, the device with rough BE
demonstrates highly variable switching behavior. As shown
in figures 4(e) and (f), resistances of the high resistance state
(HRS) and the low resistance state (LRS) are randomly dis-
tributed in the range of 103 Ω to 108 Ω with 5 orders of mag-
nitude of variation. Similarly, the set/reset voltage shows large
variation between 0.1 V and 0.5 V.

In contrast, devices with vdW flat BE demonstrates signi-
ficantly less cycle-to-cycle variability. As shown in figure 4(g),
the multicycle measurement exhibits nearly identical char-
acteristics. The extracted HRS and LRS resistances remains
relatively stable and demonstrate similar values within first
50 cycles. Furthermore, the set/reset voltage is distributed in
much narrower ranges of 0.15V to 0.25V and 0.04V to 0.09V
(figures 4(h) and (i)), respectively, which are nearly an order
of magnitude improvement compared to the device with rough
BE. Moreover, after 400 cycles, the device still demonstrates
a uniform memristor phenomenon while the rough BE device
fails to switch resistance after 100 cycles, as shown in figure 5.
The above comparisons clearly illustrate the importance of
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Figure 4. (a), (b) AFM characterizations and schematics of vdW BE (a) and conventional deposited BE (b) after integrating the InSe
channel. In particular, the RMS roughness of deposited BE in red dashed line reduces from 1.1 nm to 0.6 nm by integrating InSe, suggesting
poor BE/channel contact. Scale bars are 0.5 µm; (c), (d) schematic and I–V measurement of the control device with rough BE/channel
interface; (e), (f) distribution statistics of HSR/LSR resistance (e) and set/reset voltage (f) with 50 cycles, where large device variations are
observed; (g)−(i) electrical properties of a vdW memristor (with flat BE surface) with 50 cycles, demonstrating smaller device variations
and suggesting the importance of the BE/channel interface.
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Figure 5. (a) I–V curve of memristor with rough BE after 100 cycles measurement, where the linear curve is always observed, suggesting
device failure; (b) I–V curve of the memristor with vdW BE after 400 cycles measurement, where the memristor behavior is well-retained.

BE surface roughness for device stability and suggest that
the vdW flat BE is essential for stable memristor operation.
Furthermore, we note that the integration of an atomically

flat BE for other oxide-based memristors [30, 31] or organic
based memristors [32] would be an interesting topic for future
investigation.
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Figure 6. (a), (b) Schematic and optical image of the devices on the same InSe flake, where the TE of one device is vdW integrated and
another is directly deposited. Red dashed line represents the 3.2 nm thick InSe flake; (c), (d) I–V curve and the distribution statistics of the
device with vdW TE, demonstrating desired memristor behavior; (e), (f) Electrical measurement of the parallel device with directly
deposited TE, showing the short-circuit and suggesting that conventional TE fabrications induce considerable damage.

Figure 7. (a), (b) I–V output curves of memristors with deposited TE (a) and vdW TE (b), where clear switching behavior is observed in
both devices with 6.4 nm channel thickness.

2.4. Comparison of memristors with high-energy deposited
TE and low energy vdW TE

Finally, in order to investigate the impact of TE to memris-
tor reproducibility and stability, we fabricated Ag/InSe/Au
devices using conventional deposited Ag TE as well as our
vdW integrated Ag TE on the same InSe flake, as shown in
figures 6(a) and (b). The detailed device fabrication process is
described in theMethods section. An atomically flat BE is con-
sistently used in both devices to provide a fair comparison. As
shown in figure 6(c), the device with vdW TE demonstrates
robust and low voltage memory behavior within multi-cycle
measurements. Figure 6(d) further summarizes the HRS/LRS
resistance distribution, which demonstrates uniform device

operation consistent with the previous electrical measurement
in figure 4. In contrast, the memristor behavior is totally lost in
the control device that uses conventional directly deposited TE
on the same InSe flake, as shown in figures 6(e) and (f). Dur-
ingmulti-cycle measurements, the as-fabricated device always
exhibits a linear I–V curve with low resistance (∼100 Ω),
suggesting a short circuit between TE and BE. This could
be largely attributed to the conventional aggressive TE fab-
rication process directly performed on the channel material
(e.g. high-energy lithography, wet-chemical development, and
high temperature metal deposition), leading to considerable
damage and metal diffusion into the channel material as have
been characterized through transmission electron microscopy
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(TEM) in previous literature [17] and schematically illustrated
in figure 6(a).

We note that the TE deposition induced damage and device
failure become more pronounced when scaling the chan-
nel thickness. For all devices with channel thickness below
3.2 nm, the device failure (short circuit) and linear I–V curve
are consistently observed when using directly deposited TE,
without any memristor behavior, limiting device thickness
scaling to low voltage applications. While the channel thick-
ness increases beyond 6.4 nm, devices using deposited TE
re-exhibit memristor behavior, as shown in figure 7. How-
ever, large cycle-to-cycle variation (over 0.2 V) and smal-
ler HRS/LSR ratio (over 10) are still observed within these
devices, further confirming the unoptimized device behavior
using directly deposited TE techniques.

3. Summary

In conclusion, we demonstrated a vdW memristor by phys-
ically sandwiching pre-fabricated electrode arrays on both
sides of an InSe channel. The fabricated device shows high
integration density, high device stability, and low operation
voltage compared to the device fabricated using conventional
rough BE or directly deposited TE. Furthermore, detailed
characterizations were conducted to confirm that the improved
memristor behavior resulted from the optimized BE/channel
and TE/channel interfaces. Our study not only demonstrates
a robust InSe memristor with the lowest operation voltage,
but also provides a general electrode integration approach for
2D memristors. It may also provide exciting implications for
oxide-based memristors or other ultra-thin electronic devices
that are limited by poor device stability or non-ideal interfaces.

4. Methods

4.1. Fabrication process of vdW electrodes memristors

First, 50 nm thick Au electrode arrays (used as BE) and
30 nm/20 nm thick Ag/Au electrode arrays (used as TE) are
thermally deposited onto two separate sacrificial silicon sub-
strates with atomically flat surfaces. Next, 500 nm thick poly-
methyl methacrylate is spin-coated on the pre-fabricated elec-
trode arrays after hexamethyldisilazane treatment [17], work-
ing as a protection layer. Au electrodes are then mechanically
released and flipped upside down, so the atomically flat surface
faces up, as schematically illustrated in figures 1(c) and (d).
Finally, a few layers of InSe flake (mechanically exfoliated for
all devices) and Ag/Au electrodes (released from another sub-
strate using the above approach) are successively vdW integ-
rated onto the flat surface, to form the vdW memristor struc-
ture.

4.2. Fabrication of memristor with parallel vdW TEs using Ag
and Au metal

To fabricate the control device with both Ag and Au electrodes
in figure 3, asymmetric electrodes pair are pre-fabricated on a
sacrificial silicon substrate using two times thermal deposition,

where one electrode consists of 50 nm thick Au and the other
consists of 30 nm/20 nm thick Ag/Au. The pair of asymmetric
electrodes are released and physically laminated on top of a
BE/InSe heterostructure, forming two parallel vdW memris-
tors (one Ag/InSe/Au and the other Au/InSe/Au) on the same
InSe flake.

4.3. Fabrication of memristor with deposited and vdW TEs

To fabricate the control device with both deposited and vdW
TE in figure 6, a few layers of InSe are first exfoliated on a SiO2

substrate. A 30 nm/20 nm thick Ag/Au electrode is then vdW
integrated on the InSe channel using the previously described
method. Next, another parallel electrode (also 30 nm/20 nm
thickAg/Au) is directly deposited on the same InSe flake using
vacuum thermal evaporation. Finally, the InSe channel with
two different electrodes is transferred on top of a BE with
an atomically flat surface, as shown in figures 6(a) and (b).
Using this approach, we achieved control over memristors on
the same InSe channel, with one vdW TE and another directly
deposited TE.

4.4. Electrical measurement

Electrical transport studies of all memristors are carried out
at room temperature in a Lakeshore PS-100 cryogenic probe
station under vacuum conditions (10−5 torr), using Keysight
B2900A source measurement unit.
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